panorama

Nuevo paso hacia la producción masiva y sostenible de hidrógeno

0
La observación de mecanismos bioquímicos relacionados con la fotosíntesis ha servido de inspiración a científicos de las universidades Autónoma de Madrid y de Girona, el Instituto Catalán de Investigación Química (ICIQ) y el Consejo Superior de Investigaciones Científicas (CSIC), a diseñar un material barato y ampliamente disponible que podría facilitar la producción masiva de hidrógeno como alternativa a los combustibles fósiles.

Nuevo paso hacia la producción masiva y sostenible de hidrógeno
Funcionamiento del material obtenido. UAM

Una alternativa a los combustibles fósiles es el almacenaje de la energía solar en forma de energía química limpia. Esto es lo que hacen las plantas desde el principio de la vida en la Tierra gracias a la fotosíntesis: almacenan la energía del Sol en forma de combustible químico (los azúcares). Una versión simplificada de la fotosíntesis serviría para utilizar la luz del sol para romper la molécula de agua y almacenar energía en forma de hidrógeno que podría ser un combustible químico limpio y eficiente.

Esto, sin embargo, presenta varios desafíos. Uno de los principales es el diseño de materiales que sean mediadores en la formación de moléculas de hidrógeno, y que minimicen la cantidad de energía desperdiciada (luz o electricidad). Un material que cumple con esta función es el platino, pero su escasez y alto precio hacen necesaria la búsqueda de alternativas viables para la implementación masiva de tecnologías de producción de hidrógeno.

Un reciente trabajo, publicado en la revista Chemistry: a European Journal por el grupo Froncat de la Universidad Autónoma de Madrid (UAM), en colaboración con científicos de la Universidad de Girona, el Instituto Catalán de Investigación Química (ICIQ) y el Consejo Superior de Investigaciones Científicas (CSIC), ha dado un paso en esta dirección.

Como alternativa al platino, los investigadores utilizaron una versión modificada de fibras de carbono, baratas y fácilmente sintetizables. Los científicos descubrieron que un simple tratamiento oxidativo de estas fibras genera fragmentos estructurales similares a las moléculas que la naturaleza usa en procesos de almacenamiento de energía química.

"Es en estos fragmentos moleculares de los materiales modificados donde se facilita la formación de moléculas de hidrógeno a partir de disoluciones ácidas y la cantidad justa de energía eléctrica", detalla Rubén Mas-Ballesté, investigador de la UAM que dirigió el estudio.

"Este avance representa una contribución significativa a los necesarios avances hacia la implementación de tecnologías que cambien el paradigma energético, hoy basado en la quema de combustibles fósiles, usando materiales que hagan posible tanto su sostenibilidad como su viabilidad económica, lo que irremediablemente implica sustituir metales caros y escasos como el platino", destaca por su parte José Alemán, director del grupo Froncat.

De acuerdo con los autores, estos resultados podrían aplicarse a usos industriales en los que se requiere la hidrólisis del agua, tales como la obtención de agua pesada o la depuración salina de aguas. De hecho, los resultados ya han sido presentados en una patente que está a la espera de encontrar inversores para ser licenciada.

Añadir un comentario
Baterías con premio en la gran feria europea del almacenamiento de energía
El jurado de la feria ees (la gran feria europea de las baterías y los sistemas acumuladores de energía) ya ha seleccionado los productos y soluciones innovadoras que aspiran, como finalistas, al gran premio ees 2021. Independientemente de cuál o cuáles sean las candidaturas ganadoras, la sola inclusión en este exquisito grupo VIP constituye todo un éxito para las empresas. A continuación, los diez finalistas 2021 de los ees Award (ees es una de las cuatro ferias que integran el gran evento anual europeo del sector de la energía, The smarter E).